

Part I: Antiproton Cooling at Tevatron

Part II: VLHC

Vladimir Shiltsev Fermilab

Antiproton Source and Collider Complex

Antiproton Production at Fermilab

FNAL Slip Stacking (6-8)e12 p's in Main Injector

Stochastic Cooling in Accumulator

Accumulator Longitudinal Spectrum

Antiproton Accumulator: Stacking Rate Falls

"Combined Source" Shots: (RR+AA) → Tevatron

Weaker IBS in Recycler → Smaller Emittance

E-cooling allows "Recycler only" shots → gain 10-15%

Recycler Electron Cooling

- The maximum antiproton stack size in the Recycler is limited by
 - > Stacking Rate in the Debuncher-Accumulator at large stacks
 - > Longitudinal cooling in the Recycler
- Longitudinal stochastic cooling of 8 GeV antiprotons in the Recycler is being replaced by Electron Cooling
 - > Electron beam: 4.34 MeV 0.5A DC - 200 µrad angular spread

Electron Cooling Commissioning (July 05)

Electron cooling commisioning

- > Electron cooling was demonstrated in July 2005 two months ahead of schedule.
- > By the end of August 2005, electron cooling was being used on every Tevatron shot

Electron cooling rates

- > Drag rate: 20 MeV/hr for particles at 4 MeV
- > Cooling rate: 25 hr⁻¹ for small amplitude particle
- > Can presently support final design goal of rapid transfers (30eV-sec every hour)
- > Have achieved 500 mA of electron beam which is the final design goal.

Electron Cooling in Operation

ery Large Hadron Collider

Design Study for a Staged Very Large Hadron Collider

"Very Large" Part of VLHC

The Staged VLHC Concept

- Take advantage of the space and excellent geology near Fermilab.
 - > Build a <u>BIG</u> tunnel.
 - Fill it with a "cheap" 40 TeV collider.
 - > Later, upgrade to a 200 TeV collider in the same tunnel.
- There are no serious technical obstacles to the Stage-1 VLHC at 40 TeV and 10³⁴ luminosity.
 - > FNAL injector chain: MI + Tevatron
 - > low operating cost (20 MW frige power, like Tevatron)
 - > cost savings can be gained through underground construction
- Stage 2 VLHC is, technically, completely feasible
 - > vigorous R&D will reduce magnet cost

VLHC Parameters

Ferm	ilab-TM-2149 (2001)	Stage 1	Stage 2
Total Circumf	erence (km)	233	233
Center-of-Mas	ss Energy (TeV)	40	200
Number of interaction regions		2	2
Peak luminos	ity (cm ⁻² s ⁻¹)	1×10^{34}	2.0×10^{34}
Dipole field at	collision energy (T)	2	11.2
Average arc b	end radius (km)	35.0	35.0
Initial Number	of Protons per Bunch	2.6×10^{10}	5.4×10^9
Bunch Spacir	ig (ns)	18.8	18.8
β* at collision	(m)	0.3	0.5
Free space in	the interaction region (m)	± 20	± 30
Interactions p	er bunch crossing at L _{peak}	21	55
Debris power	per IR (kW)	6	94
Synchrotron i	radiation power (W/m/beam)	0.03	5.7
Average power	er use (MW) for collider ring	25	100

Transmission Line Magnet

warm iron and vacuum system

superferric: 2T bend field

100kA Transmission Line

alternating gradient (no quads)

65m Length

Stage-1 Magnet Yokes

VLHC Tunnel Cross Section

Stage-2 Magnets

There are several magnet options for Stage 2.
 Presently Nb₃Sn is the most promising superconducting material.

Stage-2 Dipole Single-layer common coil

VLHC Cost Basis (2001)

- Used the "European" cost base
 - > No detectors (2 halls included), no EDI, no indirects, no escalation, no contingency a "European" base estimate.
- Estimated the cost drivers using a standard cost-estimating format. This is done at a fairly high level.
 - Underground construction (Estimates done by AE/CM firm)
 - Above-ground construction (Estimates done by FNAL Facility Engineering Section)
 - > Arc magnets
 - Corrector and special magnets (injection, extraction, etc)
 - > Refrigerators
 - > Other cryogenics
 - > Vacuum
 - > Interaction regions
- Used today's (2001) prices and today's technology. No improvements in cost from R&D are assumed.

VLHC Stage 1 Cost Drivers

In FY2001 K\$	VLHC Estimate	VLHC Fraction
Total	3,981,159	100.00%
Civil Underground *	1,968,000	49.43%
Civil Above Ground	310,000	7.79%
Arc Magnets	791,767	19.89%
Correctors & Special Magnets	112,234	2.82%
Vacuum	153,623	3.86%
Installation	232,397	5.84%
Tunnel Cryogenics	22,343	0.56%
Refrigerators	94,785	2.38%
Interaction Regions	26,024	0.65%
Other Accelerator Systems	269,986	6.78%

Comparison: the SSC Collider Ring, escalated to 2001 is \$3.79 billion

^{*} Underground construction cost is the average of the costs of three orientations, and includes the cost of a AE/CM firm at 17.5% of construction costs.

Ever Attractive Solution

- VLHC=Discovery Machine (just look back in hystory)
- The construction cost of the 1st stage of a VLHC is comparable to that of a linear e+e- collider, ~ \$4 billion
- That is ~100M\$/TeV vs 2-5B\$/TeV for lepton colliders
- Based on three ~"loss-free" mechanisms:
 - > Superconducting current flow
 - > DC magnetization of iron
 - > Recirculation of protons in guiding B-field
- VLHC is the only machine under discussion which does not throw away entire beam energy each pulse:
 - > AC wall power VLHC-1 0.5MW/TeV vs 200+ MW/Tev for lepton colliders

Status and Outlook

- VLHC Study Report and Review (2001)
- Studies of Stage-1 and -2 magnets (2002-2003)
- Successful test of 100kA transmission line (2004)
- Excellent field quality in 2T magnets (2005)
- Expect to get input on:
 - ➤ High-Field Nb3Sn magnets ← from LHC Upgrade work
 - > Cost of tunneling
 from ILC studies
 - ▶ Beam dynamics & vacuum ← from Tevatron, RHIC and LHC operation
 - > Physics ← from theorists, Tevatron and LHC results

From a 1954 Slide by Enrico Fermi, University of Chicago Special Collections.

Be not afraid of growing slowly, be afraid only of standing still.

Korean Proverb